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An attempt is made in this paper to formulate a satisfactory duality theory of efficient and 
optimal programs in intertemporal models with irreversible inveatment. The introduction of the 
constraint that depreciated capital stock cannot be used for present consumption makes the 
meaningful choice and interpretation of dual variables a more difficult problem, as is pointed 
out by means of an example. A new definition of a competitive program is introduced, and this 
is seen to lead to useful characterizations of efficient and optimal programs. 

1. Introduction 

In this paper, an attempt is made to formulate a satisfactory ‘duality’ 
theory of efficient and optimal programs in intertemporal models with 
irreversible investment. While the introduction of a ‘depreciation constraint’, 
as the requirement that depreciated capital stock cannot be used for present 
consumption, does not destroy the usual convexity properties of the model, it 
does make the meaningful choice and interpretation of dual variables a more 
difficult problem. These difficulties are pointed out by means of an example 
(see Example 4.1). A new definition of a competitive program, which we feel 
to be more appropriate in this situation, is introduced [see the relations (2.4), 
(2.4’) and (2.5)]. This concept is discussed in some detail below (section 4), 
and leads to a useful characterization of optimal programs. 

A brief review of the literature will serve to place this paper in perspective. 
Two of the major themes in intertemporal economics have been the analysis 
of efficient and optimal consumption programs. Consider, first, the study of 
efficient programs. The first important issue in this area is a ‘direct’ 
characterization of efficient programs, motivated by the need to construct a 
test for the efficiency (or inefficiency) of a given feasible program by studying 
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the feasible program alone. Complete characterizations of this kind have been 
obtained in models (where investment is not irreversible) by Cass (1972), 
Benveniste (1976), and Mitra (1979b), to name a few. A complete 
characterization (of the ‘direct’ kind) in a model with irreversibility of 
investment was obtained by Mitra (1978). 

A second issue in the study of efficient programs was motivated by the 
need to study the qualitative properties of these programs. In particular, the 
following question may be asked. Suppose that a sequence of ‘prices’ can be 
proposed for a given feasible program, so that a ‘competitive producer’ 
imitating the input-output sequence along this program maximizes profit at 
each date relative to all feasible input-output pairs. If a feasible program 
‘maximizes’ (loosely speaking) the total value of consumption, evaluated at 
these prices, relative to all other feasible programs, call it consumption-value- 
maximizing. Now, does the set of efficient programs coincide with that of the 
consumption-value-maximizing programs? 

An affirmative answer, in the case where investment is ‘reversible’, was 
obtained by Cass and Yaari (1971). When investment is irreversible, however, 
this result does not hold, in general. Example 3.1 describes an efficient 
program which is not consumption-value-maximizing. Theorems 3.1 and 3.2 
go on to provide a complete characterization of efficient programs, using the 
properties of consumption-value-maximization and an additional condition. 
While the new sequence of prices is used to arrive at the result, it is not at all 
necessary in the analysis of efficient programs per se. In fact, the ‘traditional’ 
definition of competitive prices agrees with the new definition proposed in 
section 2. However, this is not the case in the study of optimal programs, to 
which we now turn. 

Some of the major issues’ in the theory of optimal allocation are (a) the 
monotonicity of optimal stocks with respect to a change in the initial or final 
stocks, and the ‘sensitivity’ analysis of large but finite-horizon optimal 
programs, (b) the ‘turnpike’ properties of infinite-horizon optimal programs, 
and (c) the characterization of optimal programs using appropriate dual 
variables (the so-called ‘price-characterization of optimal programs’). 

The issues summarized under (a) were first analyzed by Brock (1971), in 
the case where investment is reversible. These results extend (with some 
modifications) to the irreversibility model; the reader may consult Majumdar 
and Nermuth (1981) and Mitra (1981) for the relevant details. The ‘turnpike’ 
issues in (b) are too familiar to be restated here; it suffices to mention their 
extension to the irreversibility case by Majumdar and Nermuth (1981). 

This paper concentrates on the problems raised by (c), and provides a first 
step towards a duality theory for the case of irreversible investment. This is 

‘We could, of course, add to this list. An important question is that of the existence of 
optimal programs. For some results in the case or irreversible investment, see Majumdar and 
Nermuth (1981). 
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done in section 5. Example 4.1 is constructed to show that the traditional 
definition of competitive prices does not capture the nature of optimal 
programs. A pair of theorems (4.1 and 4.2) provide a complete 
characterization of finite-horizon optimal programs using an alternative 
definition of competitive prices. Theorems 4.3 and 4.4 characterize the 
infinite-horizon case with varying utility and production functions (albeit 
incompletely); and the results are tightened in subsequent theorems to a 
complete characterization in the ‘stationary’ case of invariant utility and 
production functions. The characterization is broadly in terms of 
competitiveness and efficiency, an approach first used by Brock (1971). An 
alternative characterization of optimal programs (in the ‘stationary’ case) in 
terms of the competitive conditions and an additional transversality 
condition is also provided. 

2. The feasible set 

In this section, we shall spell out the features of our model, and define 
some terms. 

The technology is given by a sequence (g,): of net-output functions and a 
sequence (6,); of depreciation rates. Throughout the paper, these will be 
assumed to satisfy 

(T.1) g,: R+ +R+, tzo, 

(T.2) g, increasing, continuous and concave, tzo, 

(T.3) 058,s 1, tzo. 

Additional assumptions will be made as we go along. Oberve that the 
sequence (g,, 8,): implies a sequence of gross-output or production functions, 
given by 

f,(x) = g,(x) + 4x9 ~20 for t20. (2.1) 

Throughout, x will denote (capital) stocks, z will denote (gross) investment, 
and c consumption. Subscripts refer to time dates. The initial stock x>O is 
given. Consumption commences at date 1. 

A feasible program (x,c,z) (or briefly, (x, c)) is a sequence 
{(XX, (c,)?, (z,)?} satisfying 
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(2.2) 

(.%Ct+1,Zt+1)20, t 2 0. 

The requirement zt 2 0 captures the irreversibility of investment.2 

In one of the sections, we shall be concerned with finite-horizon feasible 
programs. We define a T-period feasible program with final stocks b?O, or 
briefly, a T-program to b as a sequence ((x,)~,(c,)~,(z,)~} satisfying (2.2) for 
t = 0,. . ., T- 1, and, in addition 

x,zb. (2.2’) 

The welfare objectives of the planner, or of society, is given by a sequence 
(u,)? of utility functions. Throughout the paper, these will be taken to satisfy 

W.1) u,: R, +R, tz 1,3 

W.2) u, increasing, continuous and concave, tz 1. 

Additional assumptions will be made when necessary. In a later section the 
sequence (u,) r will be taken as u,=p’u, t 2 1, where O<ps 1 is the discount 
factor, and u satisfies (U.l) and (U.2). 

We now introduce some central terms. A feasible program (x,c) is 
inefficient if there exists a feasible program (x’, c’) such that c;Zc, for all 
t 2 1, with c: > c, for some sz 1. Otherwise, the feasible program (x, c) is said 
to be efficient. 

A feasible program (x, c) is optimal if for every feasible program (x’, c’) 

lim inf 5 [u,(c;) - u&J] 5 0. (2.3) 
T’m’ t=l 

A T-program (x, c) to 
T-program to b, (x’,c’), 

b 20 is said to be optimal if for every feasible 

(2.3’) 

‘Below, we shall refer occasionally to a model where z,hO as an irreversibility model. The 
same framework, but with z, not constrained to be non-negative, will be referred to as a 
reversibility model. 

3This means that u,(O) is finite. The case u,(O) = - co can be incorporated in our analysis by 
allowing the range of the utility functions to be the extended real line. Apart from some minor 
changes in the steps of the proofs, the analysis remains unaffected. 
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A feasible program (x,c) is said to be competitive (in production) if there 
exists a sequence of non-null, non-negative prices (p,)?, (r,)$ such that 

(4 ~t+lgt~xt)+~t+l~txt-rt~t~pt+lgt(~)+~t+l~tx-~tx for all ~20, (2.4) 

04 ~t+lZrt+l for all t_20, 

(c) pt + l > r, + 1 implies x, + 1 = 4x,, tzo. 

A T-program to b, (x,c) is competitive (in production) if there exists a 
sequence of non-null, non-negative prices (p,>T, (r,):, such that (2.4) is 
satisfied for t = 0,. . ., T- 1, and in addition,4 

rT(xT - b) = 0. (2.4’) 

A feasible program (x,c) is competitive (in production and utility) if there 
exists a sequence of non-null, non-negative prices (p,)?, (r,),4, satisfying 
(2.4), and in addition, 

u*(ct) - P&t 1 %(C) - PA t>=l. (2.5) 

A T-program to b, (x,c), is competitive (in production and utility) if there 
exists a sequence of non-null, non-negative prices (p,):, (r,):, satisfying (2.4) 
for t=O,..., T- 1, (2.4’) and (2.5) for t = 1,. . ., T 

Often, when no confusion is possible, we shall speak of competitive 
programs when referring to programs competitive in production, or programs 
competitive in production and utility. 

Remark. In a model where production functions are differentiable and 6,>0 
for all t, we can simply define (noting that all feasible programs must have 
x, > 0) pt = rt = qt for t 2 1, r0 = qO, where (cJ,): is constructed as 

qO=K for some K>O, 

4t+ 1 = 4t/f’(xt), t 2 0. 

(2.6) 

The sequence (p,)?, (r,); constructed in this way is easily seen to satisfy 
(2.4), and so all infinite-horizon feasible programs are seen to be competitive 
in production. However, the presence of double sequences (p,)?, (r,); 
become crucial for a satisfactory duality theory of optimal programs under 

4This condition is, of course, a familiar transversality condition, but deserves special attention 
since xT> b is possible even for optimal programs. 

JMathE E 
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irreversible investment. This we shall see below. An analogous definition is 
therefore used for programs competitive in production, to facilitate an easier 
analysis of the interactions between efficient and optimal programs. 

A feasible program (x, c) is said to be regular if x, > 0 for all t 2 0, and 

lim inf 2,/x, > 0. (2.7) 
f’cc 

A feasible program (x,c) which is competitive (in production, or in 
production and utility) with prices (p,)?, (I~); is consumption-value- 

maximizing if 

lim inf i pl(c; - c,) 5 0 for all feasible programs (x’, c’). (24 
T-cc t=1 

Finally, some additional notation. Recall that for a concave function h(x) 
defined on R’, the right-hand derivative is defined for x 20, and this will be 

denoted by h+(x). Moreover, the left-hand derivative is defined for x>O, and 
this will be denoted by h-(x). Clearly, h-(x) 2 h+(x) for all x > 0, and if x < y, 
then h+(x)2 h-(y). When h is differentiable we shall denote its derivative by 
h’; when twice differentiable, its second derivative by h”. 

3. Consumption-value-maximization and efficiency 

One of the intuitive implications of efficiency is the feature of 
consumption-value-maximization, i.e., efficient programs should ‘maximize’ 

consumption value, or, precisely, in the sense of (24, not be ‘overtaken’ in 
value by another feasible program. The converse statement is also worthy of 
conjecture: a feasible program which is consumption-value-maximizing is 

efftcient. 
Cass and Yaari (1971) proved, in a model where investment is not 

irreversible, that efficient programs coincide exactly with the set of 

consumption-value-maximizing programs. In this section, we show by means 
of an example that this complete characterization of efficient programs by 
means of consumption-value-maximizing properties fails to hold when 
investment is irreversible. This is followed by two theorems completely 
characterizing efficient programs using the consumption-value-maximizing 
property and an additional condition. 

Example 3.1. (Efficiency need not imply consumption-value-maximization) 

Let g, =g for all t 2 0, 6, = 6 E (0, l), t 2 0. Let g be differentiable and strictly 
concave, and let f(x)=g(x) +6x have the following properties: 
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(i) there exists x* > 0 such that f’(x*) = 1, 

(ii) there exists f > 0 such that f(Z) = 2, 

(iii) there exists X, x such that 

(a) i>x>&>x*, 

(b) Ax*) 2 x 

(c) f(x)=f, ’ 6X=x and [f’(Z)+l][f(x*)-x*]>[f(f)--x]. 

Such functions exist. For instance, consider g(x)=x”8, 6 =t, ~?=2(3)~“, 
X = ($817, x* = (917, 2 = (2)8/7. 

Let the initial stock be given by x=x *. Define a program (x, c) by x0 =x, 
x,=x if t is odd, X,=X if t is even, for all tll, ~~+~=f(xJ-x~+~ for all t>=O. 

It is easy to check that (i) (c,,z,)zO for all t 2 1, and (ii) z,=O for all t >2 and 
odd. By (i), (x,c) is feasible. It follows from (ii) and Proposition (3.1) in 
Mitra (1978) that (x,c) is efficient. 

Clearly the sequence r0 = 1, pr = rt = rt- I /f’(xt_ I), t > 1, form competitive 
prices for (x,c). [These are also the prices used by Cass and Yaari]. Define 
a= l/f’(x), b E l/f’(xJ. Clearly, b >a> 1. Then p1 = 1, and for t > 1 and even, 
p,=(l/b)a”2b”2. F or t > 1 and odd, pt = (l/ab)*u”2bN2. Now c1 =f(x*) -_x. For 
t > 1 and even, c, = 0. For t > 1 and odd, c, =f(%) - x. 

Define a feasible program (x’, c’) by xi = x* for all t 20, c;=f(x;- l)-x; for 
all tzl. 

Now, 

p1 cc; -c,] =f(x*) - x* -j-(x*) +x = & -x* > 0, 

p2[c; - $1 = a[f(x*) -x*1 > 0. 

For t 2 2 and odd, 

Et = P,CC; - 4 + it + I Ccl + I - 4 

“u”zb’~‘[{f(x*)-x*) -{f(+.+{x--}I+ ; 
0 

?- 
uf’2bf’2[f(x*) - x*] 

2 ; iu’!2b”2[.f.(x*) _ x*] _ f +&,“2[y- x1 0 0 
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2 & i,t’2b’:2~(.f(l*)-X*l - ;u-,\-; J= f 0 0 +a”‘b”“[{f(x*) -x*> - {f(x) - &}I 

1 : 
> E - = 0 ab 

ut”bti2 where E >O. 

Similarly, E, 2 F’ 2 0 for t 2 2 and even. 

Hence 

lim inf E p,(c; - c,) = co, 
T+co t=1 

so that the efficient program (x, c) is not consumption-value-maximizing. 

It should be clear from the example that additional conditions are required 
if one is to completely characterize efficient programs in a framework of 
consumption-value-maximization. Before presenting the main theorems 
which accomplish this, we note a variant of the basic Cass lemma,’ stated 
for the case of irreversible investment. 

Lemma 3.1. Let (x,c) be a feasible program. Suppose that there exists a 

positive integer T and a sequence (Ed)? satisfying 

(3.1) 

(‘4 Et + 12 ft(x,) -“6(x, - G)Y tz7: 

Then (x, c) is inefficient. 

Proof: Define a program (x’,c’) by x;=x,, OstsT-1, X;=X,-E,, tzK 

C;+,=ft(X;)-X;+,, t20. 

Observe that for all t 20, 

x:+1- BtX~=Xt+1-8tX~-&t+1~Xt+~-BtXt-&t+1=Zt+1-E~+1~0. 

Hence z;zO for all tz 1. 

Also, 

‘See Cass (1972). 
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For tl T- 1, c;=cT. For tz 7; 

so 
C’ 1+1-c f + 1= 5 + 1- Mxt) -_fxxr - 412 0. 

Hence, (xl, c’) is a feasible program satisfying cizq, t 2 1, and ck>c,. 

Therefore, (x, c) is inefficient. 

We now present a set of sufficient conditions for inefficiency. 

Theorem 3.1. Suppose that (x,c) is competitive in production [with prices 

(p,)?, (I~):], and satisfies the following property: There exists a feasible 
program (x’,c’) such that 

(4 

(‘4 

lim inf i p,(c; -c,) > 0, 
T+m f=l 

lim inf zT /(xT - x$) > 0. 
T+a, 

Then (x,c) is inefficient. 

(3.4 

ProoJ: Let a competitive program (x,c) satisfying (3.2) for some feasible 
program (x’,c’) be given. Then there exists an integer F and /?>O such that 
for all Tz T 

il Pk-c,)ZB, 

Define for t 2 0, 

K = pt + Ig,(x,) + rt + 14x, - rtx,, 

Wi = pt + Ig,(x;) + r, + ,6,x; - r&. 

Clearly, by (2.4), 

wz W; for all t 20. 

We have, for t 2 1, 

P,(c;--c,)=P,Cg,~,(x;-,)--z;l-PtCgt~l(x,-,)--z,I 

(3.3) 

(3.4) 
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+ crt4 - 1% - 1 --Yt-1X,-l+PtX,-Pt6,-1X,-11 

-~F,6,_,X~~,-r,~,x;-,+~,X;-~,6,_,~;_,] 

Summing from 1 to 7: we have 

(3.5) 

Note that by (3.5) and 3.1), 

x,>x;. for all Tz? 

By (3.2b), there exists an interger ? and oi>O such that for all Tz t 

ZT /(XT - x;.) 2 6. (3.6) 

Let T* =max(z ?‘). Define u=min(oi, 1). For Tz T*, define +- by 

(3.7) 

and VT by 

qT=&[xT-x;]. 

Observe that 

(3.8j 

PTZT~CIPT(XT-X)T)=~LTT(XT-XX;)~CI [(Y; w-5; w:)+P] 

[using (2.4), (3.3) and (3.5)]. Using the last inequality to get pT>O, we have 

o<ETs&.sZT for TzT*. (3.9) 
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Now, for Tz T*, 

(3.10) 

[using PT=IT for all Tz T*, by (2.4) and (3.6), and qTz.sT]. 

since ~Tfa~?,r~&r. 

Using this in (3.10), we have 

and since pT>O for all T 2 T*, we have 

sT+r 1 fT(xT)-fT(xT-sT) for Tz T*. (3.11) 

Using (3.9), (3.11) and Lemma 3.1, (x, c) is inefficient. 

Remark. This technique is easily modified to provide a simple proof of the 
Cass-Yaari theorem (the non-trivial ‘necessity’ direction) in the case of 
reversible investment. 

Here by the basic lemma of Cass (1972), we only need establishish the 
existence of an integer T* and a sequence (E~)$ such that O<E,~X,, t 2 T*, 
and that (3.lb) is satisfied. Define sT and ylT as in the proof, with a set equal 
to 1. (3.5b) is verified in exactly the same way, and so is sTzqT for all 
T2 T*. Therefore sT~xT--x~~xT, and this establishes the result. 

For the converse to Theorem 3.1, we will make the following additional 
assumption on the technology: 



92 7: Mitra and D. Ray, Efficient and optimal programs 

(T.4) There exists CL > 0 such that for all feasible programs (x, c), g:(x,) 2 E for 
all tz0. 

Remark. Observe that this does not require inf,.,g:(x)> 0 for all t. _ 

Take for example, the stationary case, with g,=g for all t 2 0, and 6, 
= 6 E (0,l) for all t 2 0. In this case, it is easy to check (using 6 < 1) that (T.5) 
is satisfied, even if inf,,,g+(x) =O. _ 

Theorem 3.2. Suppose that (T.4) holds. Let (x,c) be an inefficient program 

which is competitive in production, with pt>O for all t > 1. Then there exists 

a feasible program such that 

(4 

(b) 

lim inf i p,(c; - c,) > 0, 
T+m f=l 

lim infz,/(x,-xk)>O. 
T-CC 

(3.12) 

Proof: Since (x,c) is inefficient, there exists a feasible program (x”,c”) such 
that c;z c, for all t 2 1, and c; >c, for some t 2 1. Let s be the first period 

in which c: > c,. Define a program (x’, c’) by xi = x;I, 0 5 t 5 s, and xi+ 1 = 

f,(4-c,+1 for t 2 s; c: = c: for 15 t 5 s, and c: = c, for t t s. Clearly, c; = c, for 
t+s, and c;>c, for t=s. 

To check that this program is feasible, first note that 

c;+,=ft(x;)-xi+, for tz0. 

It remains to check that z; 2 0 for all t 2 1. To show this, we first claim that 

x;zx; for tz0. 

This is certainly true for 0 5 t 5 s. Also 

4 + 1 =fsK) - cs + 12 f,(4) - cc+ 1 =fs(x3 - cs+ 1= x6+ 1. 

Now suppose that the claim is true for T=s+ t, so t 2 1. Then 

x; + 1 =fTtxi) -c T+,~f~x;)-c;+,=x’;+,* 

Hence 

x;zx; for all t?O. 

Therefore, for t 2 0, 

z;+,=g,(x;)-cc,+,~g,(x:)-c:‘+,=z;’+,~o. 
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Now, pS > 0. Thus CI = p,(c: - c,) > 0. For all T > s, 

& P,(4 - 4 2 Psk: - 4 = a ’ 0. (3.13) 

This verities (3.12a). To verify (3.12b), first observe that x,>x; for all tzs, 
using (3.13), (3.5) and w:1 W; for all ~20. Define &,-X,--X; for all tzs. 
Clearly, for tls, E,>O and 

zt+1 - 4 + 12 &J - &(4 

= Mx,) -AN)1 - 4[Ixt - 41 

= cx 1+1 -~;+1l-~,cx,-x;l 

=%+1-4~, 

so 

By (3.14), z,/(x, - xi) is defined for all t > s. Now, for t 2 s, 

E t+1=xt+1 - 4 + 1 =.Lb,) - ct + 1 -f,(x3 + 4 + 1 =.L(xt) -“6(x, - 4, 

so that by concavity off,, 

(3.14) 

(3.15) 

Using this in (3.14) we have for tzs, 

This establishes (3.12b). 

Remark. Theorems 3.1 and 3.2 provide a complete characterization of all 
inefficient programs in a framework which takes as its central feature the 
concept of value-maximization. Additional conditions are needed because an 
efficient program with the irreversibility model need not be efficient within 
the reversibility model. This by itself does not imply that the given program 
fails to be a consumption-value-maximizing program, for the set of programs 
which ‘overtake’ it in consumption value in the reversibility model may be 
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excluded by the irreversibility conditions. However, one might suspect that 
this does not occur, in general, and this suspicion is confirmed by Example 
3.1. 

It is useful to have a set of conditions which, apart from the consumption- 
value criteria, focus on the feasible program alone (such conditions are not 
given by the theorems). Such conditions are given in Corollary 3.1, and will 
be used in a later section. 

Corollary 3.1. Suppose that a feasible program (x,c) is competitive in 
production [with prices (p,)?, (It);] and satisfies the following properties: 

(a) There exists a feasible program (x’,c’) such that 

(b) 

lim inf i p,(c; - c,) > 0, 
T+m t=1 

(x,c) is regular. 

(3.16) 

Then (x,c) is inefficient. 

ProoJ: If (3.16a) is satisfied, there exists an integer T* and a>0 such that 
for all Tz T*, 

rT(xT - xk) 2 i p,(cj - c,) 2 o! > 0, 
f=l 

and so 

x,>x;. for all T 2 T*. 

Hence z,/(x, - XL) is defined for all T 2 T*, and 

z,/(x, - 4) 14x,. 

so 
lim inf z,/(x, - xi) > 0, 

t+m 

and conditions (3.2a) and (3.2b) of Theorem 3.1 are satisfied. Therefore (x,c) 
is inefficient. 

One might, perhaps, feel that the converse of Corollary 3.1 is true. This 
would be very useful, but is unfortunately not true, as the following example 
demonstrates. 

Example 3.2. (An inefficient program need not be regular) 
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Consider the technology described in Example 3.1. Part (iiib) is not 

necessary for the argument here, and the condition f(x)=x may be 

weakened to f(x) 2 2. 
Let the initial stock X=X. Consider a program (x, c) defined by x0 =x = 2, 

z,=(l-6)%/t, t odd, z,=Z-&8x+(1-6)%/(t--l)], t even, for ~21; xt+i= 

&+z,+1 for t?O; ct+i=f(xt)-xy+i for t20. 
To check feasibility, we need only verify that (i) z, 20 for t 2 1, and (ii) 

c, 2 0 for t 2 1. It is clear that (i) holds. 
To verify (ii), note that for t 2 0, x,=X if t is even, and x,=6X+ (1-6)%/t, if 

t is odd. To see this, observe first that x0 = 2. Now let x,=X for some s 20 
and even. Then 

X s+l=k+z,+l= 6x+(1 -@/(s+ l), 

and so 

This shows that x,=X for even t. That x,=6X+(1 -d)Y/t for odd t follows 
immediately. To show, now, that c,zO for all t 2 1, it suffices to show that 
g(x,_,)zzz, for all tzl. If tzl is odd, 

(using here the fact that 1> x). If t 2 1 is even, 

Note that x,2x for all t 20. It follows that 

where h > 1 (since x* <x). Thus 

and 

a+ lzt+ 12Wl -Wtt+ 1)1, t odd, 

qt+Izt+1~h’[x-6(6x+(1-6)~/t}], t even. 
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Thus 

liminfq,z,>O (in fact=co). 
f’rn 

This verities condition (4.1) in Mitra (1978). Condition (4.2) in Mitra (1978) is 
verilied by noting that x,lx>x *, hence (x,) is ineflicient in the reversibility 
model, so that by Cass (1972), Et”=,, l/q,< cc. Therefore by Mitra (1978, 
theorem 4.1), (x,c) is inefficient. 

But z,/x, s(l -?i)%/ltx for t odd, showing that 

lim inf zJx, = 0. 
f’rn 

4. Competition, efficiency and optimality 

In this section, we shall invoke the techniques of duality theory in an 
attempt to characterize the class of optimal programs. Utility functions and 
the technology are allowed to vary over time. While this generally forces us 
to sacrifice a complete characterization (complete characterizations, however, 
will be obtained in the ‘stationary’ models), it is not the central obstacle to a 
satisfactory application of duality techniques. Irreversibility of investment, 
surely a realistic phenomenon, is the key problem here. While irreversibility 
does not destroy any ‘convexity’ features of the model, thus still permitting 

the use of separation arguments, the nature of the dual variables, or their 
meaningful economic interpretation as ‘competitive prices’, is by no means 
clear without careful analysis. Certainly, the ‘traditional’ competitive prices6 

will not do, and this is shown in Example 4.1. 
Intuitively, we may proceed in the following way. Consider an optimal 

program, and two time periods t, t+ 1. There will exist ‘prices’ such that 
utility-maximization occurs in each of these dates, relative to these prices and 

budgets equal to the value of consumption. However, these prices may 
necessitate profit-maximizing behavior for ‘each producer’ which is infeasible 
for the economy, if the depreciation constraint is binding. Each producer 

may want to move to a lower capital stock in the interests of prolit- 
maximization, whereas the economy as a whole cannot. One would expect 
the price of capital to fall in this case. As a result, the price of consumption 
exceeds that of the capital stock, and this in fact would be a signal that the 
depreciation constraint is binding. With this verbal argument in mind, 
examine the ‘competitive conditions’ (2.4). Regard pt as the (shadow) price of 
new output, and rt as the price of capital. The condition pt Zr, simply 
expresses the intuitive notion that there should be no reason for capital 

6These are the all too familiar prices defined below, see (4.1). 
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stocks to be at a premium along an optimal program, since the depreciation 
constraint only hinders the disposal of capital. The condition ‘pI >r, implies 

x,=6 1_1x,P1’ expresses the verbal argument we have advanced above: 
consumption is at a premium only if the depreciation constraint is binding. 
Finally, the profit-maximizing condition may be interpreted thus: revenue in 
period t + 1 is simply the quantity of new output, evaluated at price pr+ r, 
plus the quantity of depreciated capital, evaluated at its price Y~+~. Costs in 
period t are written simply as r,x,. This is because if the depreciation 
constraint were binding in the previous period, x, = 6,_ ix,- 1, the appropriate 
price is r,. If it were not, then x, would consist of a ‘previously depreciated’ 
stock 6, ix, _ 1 and a fresh investment z, > 0. The former would be evaluated 

at r,, the latter at pt. However, since the constraint was not binding, we have 
pt = rt and so costs are still expressible as ptz, + r,6, _ l~t _ 1 = r,x,. 

This insight will help us develop a duality theory for optimal programs. 

First, we recall the standard definition of a program competitive in 
production and utility. The definition is given for infinite-horizon programs; 
the obvious modifications hold for finite-horizon programs.’ Henceforth, we 
will refer to a program which is competitive in production and utility as a 

competitive program (where no confusion is possible). 
The usual definition describes a program as being competitive if there 

exists a non-null non-negative sequence of prices (4,): such that 

That 

u,(c,)-qq,c,2u,(c)-qq,c for ~20, tz 1, 
(4.1) 

41+1fr(xt)-qtx,~q,+1ft(x)-qq,x for ~20, tzo. 

these conditions do not characterize optimality, even with a finite 
horizon, is shown by the following example. 

Example 4.1. (Optimal programs need not be competitive in the sense of (4.1)) 

Let x= 1, g,(x)=+x, fit=%, b=O, u,(c)=c*. Let T=2. Any T-program (x, c) 
then satisfies: c1 =$--E, c,=~++E, where O~E$*. 

Now, 

4” _ ($ _ E)i 2 *+c, 

and 

a+-(+++&)+&;-+)[-&E/2], 

Thus, 

[+++;“]-[(+-E)++($+$E)‘]&[l/&-+]. 

‘The finite horizon ‘transversality condition’, q,(x, - h) = 0, must be added. 
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Hence, a T-optimal program (x*,c*) must satisfy 

CT=’ 
23 c; =$. 

We claim that (x*, c*) is not competitive, in the sense of (4.1). Suppose, on 
the contrary, it is. Then u;(c:)=ql, u;(cT) = q2, and f;(x:) = ql/q2. Since 
q1 #q2, so f;(x:)# 1. But, since ~,(x)=~,(x)+~,x=~x+$x=x. 

So, f;(x:)= 1, a contradiction. This establishes our claim. 

The following theorems (4.1 and 4.2) completely characterize optimal 
programs in a finite horizon model. 

Theorem 4.1. Suppose that a T-program to b, (x*,c*> is competitive. Then it 
is optimal. 

Proof: Let (x*,c*) be competitive with prices (p:):, (Y:),‘. Then, using 
the competitive conditions (2.4) and (2.5), and (3.5) we have, for any feasible 
program (x’, c’), 

5r*T(x*T-x;)5rF(x;-b)=O [by (2.4’)]. 

Theorem 4.2. Suppose that there exists a feasible program (2, E> with t,> 0 

for some t=l,..., 7: Then any optimal program to b, (x*,c*), is competitive. 

Proof: Define 

V={(q )...) cT,xl-soxo ,...) x,-6,_,x,_,)ER2*: 

x,~O,O~t~ 7;c t+1S(Xt)-X,+1,05t5 7: Xo=X,X&b}, 
and 

9= (ci ,..., c,,d, ,..., dT)~RZ+T: $u,(cJ+(c:)}. 

It is obvious that %? and 9 are non-empty and convex, and that % n 9 = @. 
By the Minkowski Separation Theorem, there exists (p,,q,)T, non-null, and 
a E R such that 

~Ptc,+~q,(x,--6,-,x,~,)Ja 
1 1 

for all ((c,)T, (x,-L 1x,- AT) E g, 

(4.2) 
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f ptc, + jj q,d, 2 c( for all (c,, d,)T E 9. (4.3) 
1 1 

Since 

{(c:)T,(x: -L 1x,*- ,)T> E%, 

~p,c~+~q,(x:--6*-Ix:_,)6a- (4.4) 
1 

By choosing an appropriate sequence in 9 [using the continuity of (u,)f, 
and passing to the limit in (4.3), 

i p,c: +.t qt(xF - 6,_ 1x:_ 1) 2 a. (4.5) 
1 1 

Combining (4.2), (4.4) and (4.5), we have for all elements on V, 

~=~PtC:+~~,~x:-6,~lx:_,~~~~,c,+~~,~~*--ii,-l~,~l~. (4.6) 
1 1 1 1 

Observe that (p,,q,)T is non-negative. For if qs (resp. pk) were negative for 

some s (resp. k), we could choose a suitable element of 9 to violate (4.3). 
Define rt-Pt- qt. We verify that rf 20, 15 t 5 7: Suppose, on the contrary, 
that rs < 0 for some s. Then ps < qS. Define (x’, c’) by 

xb =x, xi + 1 - 6,x; = x;“+ 1 - 6,x: for all t # s, 

x:=x:+& for some E>O, 

and 

c;=f,_1(x;-l)-6t_lx;_l. 

Since xi20 for all lsts7; xb=x and xkzb, 

We claim that c;zc:, s+ t, and c:=c,*- E. The second relation is immediate. 
As for the first, observe that c;=c:, lstss-1, and that x;zx: for all 
11t17: For tzs, -- 

cl + 1 =ftc4 - x;+l=g,(x:)+(6,x:-x:+,) 

=&3 + (4x: - x,*+ 1) 2&(x:) + 4x: - xi++ 1 =f,w9 - x,*+ 1 = CT+ 1. 
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This verifies the claim. Now note that 

which contradicts (4.2). Hence I, 2 0 for all t = 1,. . ., T 
This also shows that p,z q1 for all t= 1,. . ., I: Since (Pt, qt)T is non-null, it 

therefore follows that (pt,rt)T is (non-negative and) non-null, We have also 
oerijied (since qt 2 0) (2.4b), pt 2 I,, 15 t 5 7: 

Now we uerifv (2.4~). Suppose, on the contrary, that (p,-- r,)(x,* 
-6,_1x,*_ 1)>O for some 15;~s IT: Since qAx: -6,_ 1x,*_1)lO for all t, this 
implies 

We know that pk >O, for some k. Define (c;, d:‘)T by c: = CT, f # k, c; = 
c; + 8/2p,, d;’ = 0, 1 <= t 2 T. Clearly (cl, d:)T E 9. But 

contradicting (4.3). This verifies (2.4~). 

Next, we verSfy (2.5). Define 

&= (a,/I)~R’Ifor some (c,)T,c,zO, 

Clearly, d is non-void and convex. We claim that 8 n R: + = @. If this is not 
true, then there exists (c,):, with corresponding (~1, /?) B 0. Define (C;, 2,) E 9 by 
C;=c, for all t=l,..., 7; a,=0 for all t=l,..., 7Y Then 

contradicting (4.3). 
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So by the Minkowski Separation Theorem, there is (m, n) #O and 8 E R 
such that 

mcr+nfi18 for all (cc,~)ER~++, (4.7) 

mcr+n/?s8 for all @,B)E&. (4.8) 

Now, (320, since (0,O) E 8. Also, 850, otherwise we could contradict (4.7) by 
choosing (c(, /?)%O sufficiently small; so 0 =O. Clearly, (m, n) 20, otherwise we 
could pick (c(, /?) E R: + to violate (4.7). We claim, now, that m >O. Suppose 
not, then certainly n> 0. By (4.53, and the fact that 0 =O, n/3 50 for all 
(a, /?)E 8, i.e., fl50 for all (a, B) E 8. For any feasible program (x, c), (c,, x, 
-6,_Ix,_,);E%?. 

Using (4.6), and property (2.4~) (which we have already proved), 

Since there exists a feasible program with consumption positive at some 
date, it is easy to check that there exists a feasible program (z?, 2) with &>O 
for all t=l,..., 7: Further more pI, > 0 for some k. Therefore, using (4.9), 

T T 

Cp,c:~Cp,~,~p,~,=y>o. 
1 1 

Now pick c, = c:/2, t = 1,. . ., 7: Then 

&p& 23/2>0, 
1 : 

violating fls0 for all (a,B)e&. This establishes the claim. So 

a+@50 for all (a,j?)E&, where 11~ n/m. (4.10) 

Clearly p > 0, otherwise a 5 0 for all (a, ,l?) E 8, which violates the assumption 
that u, is an increasing function for all t = 1,. . ., T 

Now, for any t, and c 2 0, define (ci)T by CL = c,*, s f t, c; = c, 

a = $ Cut(4 - &?)I, 
T 

B = c cw: - P,41~ 
1 

Cancelling common terms, 

u,(c) - ut(c3 s PP,(C - 47. 
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Define p: =ppt, q: =pqt, r: =,urt, t = 1,. . ., 7: Note that (p:, Y,*): satisfies all 
the properties verified so far. Furthermore, 

u,(e) - p:c: 2 u,(c) - p:c, CZO, t=l,...,T. (4.11) 

Also, by the fact that u, is increasing, p: >O for all 
so far shown that properties (2.4b), (2.4~) and (2.5) 

null non-negative sequence (p:, Y:):. 

t. Summarizing, we have 
are satisfied by the non- 

Now we check that (2.4’) holds. For any x2 b, define (xi),’ by x:=x:, 
O~t~T-1;x~=x,cj+,=f,(x~)-x~+,,O~t~~-1.Then(cj,x~-6,~,xj_,)~’~~. 
Using (4.6) with (p:, q:), and cancelling common terms, 

or 

or 

or 

(4.12) 

If rF(x: - b) > 0, we contradict (4.12) by choosing x = b. Therefore rT(xF - b) = 0 
and this verifies (2.4’). 

Finally, we uer$y (2.4a). First, rg has to be defined appropriately. To this 
end, let 

-C4={(x,Y)ER::Y~go(x,>, 

and 

LB = {(x, Y) E R2: x < xo, y >gobo)). 

Since go is increasing, d n ~8 = @. Moreover, both d and 99 are non-empty 
and convex. A reapplication of the Separation Theorem yields the existence 
of scalars (u, u) # 0 and y such that 

ux+uyzy for all (x,y)Ea, -. (4.13) 

ux+uy5; for all (x,y)E&, (4.14) 

Using a sequence in 99 converging to (xo,g(xo)), we conclude, passing to the 
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limit in (4.13), that 

uxo + wo(xo) 2 Y. 

Since (x0, so(xo)) E d, 

uxo + ugobo) 5 Y. (4.16) 

(4.15) 

Combining (4.14), (4.15) and (4.16), we have 

ugo(xo)+uxo~uy+ux for all (x,~)E&. (4.17) 

Clearly u 20. If u ~0, then we could violate (4.13) by appropriate choice of 
(x, y)eB. Similarly ~50. For if u>O, we would pick (x,O)E& with x large 
enough to violate (4.14). 

We now claim that u > 0. If u =O, then u ~0. Thus, using (4.17) x0 5 x for 

all (x, y) E &‘, a contradiction since x0 > 0 and (0,O) E L&‘. 
Recall that pf >O. Multiplying by an appropriate scalar, we can rewrite 

(4.17) as 

p:go(xo) + Bx, 2 p:go(x) + tix for all x 2 0. (4.18) 

Now define rg = r:60 - ii. Clearly $2 0. Also, using this in (4.18) we have 

p:go(xo) + rT6,xo -$x0 2 p:g,(x) + r:6,x - r,*x. (4.19) 

Now fix tz 1, and some x20. Define (xi),’ by x:=x:, s# t, x;=x; (c;): by 

c;+1=ft(x;)-x;+,. Clearly (c;, xi - 6,_ 1x; _ ,)T E %. Using (4.6), 

Cancelling common terms, we have 

P%,* + P,*, I$+ 1+ 4:(x: - 6, - 1x;“- 1) + 4;F+ Axt*+ 1-&x?) 

2 PT.4 + p:+ 14 + 1+ 4Xx - 4 - Ix?- 1) + @+1(x:+ 1-&x), 

or 



104 7: Mitra and D. Ray, Ejkient and optimal programs 

Again cancelling common terms, 

or 

which verifies (2.4a), and proves the theorem. 
We now turn to a characterization of infinite-horizon optimal programs. 

There are two possible routes. One way is to attempt a characterization by 
means of the competitive conditions and some additional transversality 
condition.* Another route, perhaps of greater tractability in ‘non-stationary’ 
models, is to characterize optimal programs as the class coinciding precisely 
with that of the competitive and effkient programs.’ In this section, we will 
employ the second method. In the next section, Theorems 4.3 and 4.4 will be 
used to provide complete characterizations of optimal programs in the 
stationary case. Characterizations by the first route will also be provided. 

Theorem 4.3. Suppose that a regular program (x,c) is competitive and 
efficient. Then it is optimal. 

Proof Suppose that (x,c) is not optimal. Then there exists 
program (x’,c’), an integer T* and a>0 such that for all Tz T*, 

fx 5 i C%(4) - ut(41. 
t=1 

Since (x,c) is competitive, there exists (p,) such that 

Combining (4.20) and (4.21) we have 

i.e., 

a feasible 

(4.20) 

(4.2 1) 

(4.22) 

lim inf i p,(cj - cr) > 0. 
T+m t=l 

‘This is, of course, the usual approach; see, for example, Peleg and Ryder (1972). 
9This is the approach taken by Brock (1971). 
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Observe that x,-x’,>0 for TzT*, since rT(xT-x~)~CT=lPt(~I-~t)>C1. 
Using this fact, the efficiency of (x,c) and Theorem 3.2 yields 

lim inf zr/(xr - xk) = 0. 
T-CC 

But for Tz T*, 

so 

lim inf zT/xT = 0, 
T-CC 

contradicting the fact that (x,c) is regular. 

We now provide a partial converse of Theorem 4.3. 

Theorem 4.4. Any infinite horizon optimal program is competitive and 
efficient. 

Proot Let (x,c) be an optimal program. Clearly it is efficient. To prove 
that (x, c) is competitive, observe first that there exists a first r 2 1 such that 
c, > 0. Consider, now the feasible T-programs to xr given by xf = x,, 0 5 t 5 7; 
cT = c,, 1 It I i? For T2 7, Theorem 4.2 is applicable, and we may assert, -- 
noting (by the ‘Principle of Optimality’) that (xT,cT)T is in fact optimal to b 

XT, that there exists competitive prices for this T-program, (pT)T, (if), 
sytisfying the finite-horizon competitive conditions (2.4) and (2.4’). 

We claim now, that IIpT,r,T\I;=, is bounded (where [[.I( denotes the sum- 

norm). Since p:zrT, it suffices to exhibit the boundedness of PT. Suppose, on 
the contrary, that p~+cc along a subsequence of T By the competitive 
conditions, we have 

u,(c,) - u,(c) 2 pT(c, - c) for all c 2 0 and T 2 7. 

Since c, > 0, pick c = cJ2 > 0. Then 

%k) - u,(c,P) 2 PfGP, Tz7, 

which, however, cannot hold for large T if lim,, m sup pT = 00 

Hence 
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We now demonstrate that I(pT,rTIjF=r is bounded for all t&. Let s>z be 
the first period in which lim,, o. sup lip,‘, $‘[I = co. Pick x > x,T, and define 

A= min [6,(x- x,T), {g,(x) -g,(x,‘)J] if 6, > 0. 

Let e = (l,l)‘. Then, for Tz s, 

But the left-hand side goes to co for a subsequence of 7; a contradiction. 
So /p,‘,r,T(I% b 1s ounded for szz. (The case a,=0 is easily checked.) 

We will now show that rc is bounded in 7; and that I(pf’,r,TjI~=, is bounded 
for all t 2 1. Suppose that this is not true for some t; clearly t < z. If t =O, this 
means that lim,,, supr,T=a. If t>l, lim,,,supIlpT,rTII=Co. In this case, 
too, lim,, o. sup rT = 00, since pT = r: [by (2.4c), since CT =O, hence zT>O]. 
Observing that qt(0)lO, we have by the competitive conditions, 

PT+ A47 + rT+ 14-C - rTxT 1 P,', ,s,(O) 2 0. 

Since xT>O, it follows that limT_oosupIlp~+l,r~+lII=~. If t+l=z, this is a 
contradiction. Otherwise, CT+ 1 = 0, so pT+ I = rT+ 1 and hence lim,, a sup rj!+ I 
= co. Noting that XT+ I >O, repeat this procedure. In a finite number of steps, 
we get IIpT, rTll+ co along a subsequence of T which is a contradiction. 

So we have established that rg5M(O) and lip:, $11 sM(t), where M(t)< co, 
for all t-+0. By the Cantor Diagonal method, we can extract a subsequence 
T, such that (ptTn, rp)+(p,, r,) as T,-+ co and rp+rO as T,+ 00. The sequences 
(pt)F, (r,); are easily seen to be infinite horizon competitive prices. 

Theorems 4.3. and 4.4, taken together, do not provide a complete 
characterization of optimal programs. Example 4.3 below demonstrates that 
the ‘regularity’ assumption on the sifliciency side is not superfluous, by 
constructing a competitive and efficient program which is not optimal. The 
example rests heavily on the feature of varying utility functions. Below, in an 
analysis of the stationary case, we shall see that Theorems 4.3 and 4.4 can 
indeed be tightened to completely characterize the class of optimal programs. 
Indeed, in one case, a complete characterization is possible without forsaking 
the generality of (u,)?. 
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Example 4.3. (A competitive and efficient program which is not optimal) 

Consider Example 3.1, and the feasible program defined there, with its 
associated prices (p,)?, (r,)?. Suppose that the utility functions (u,)? are of 
the form 

u,(c) = PA tz1. 

Consider the ‘golden rule’ program (x’, c’) with xi= x* for t 20, c;=f(x*) 
-x*, t 2 1. For this program 

lim inf i [u,(c;) - u,(c,)] = lim inf i p,(c; - c,) = co. 
T+m f=l T-m f=l 

Hence, (x,c) is not optimal. However, it is certainly competitive and, by 
the analysis in Example 3.1, efficient. 

This result does not depend on the linearity of (u,)?, which is simply 
assumed for convenience. The reader may construct a similar example with a 
strictly concave u,, of sufficiently small curvature, satisfying u;(c,)=pt (take a, 
to be differentiable). The crucial issue here is the time-dependence of the 
utility functions. 

5. Characterizing optimal programs: The stationary case 

In this section, we tighten the results obtained in the general case by 
considering a model with stationary technology. We shall take g,=g for all 
t > 0 and 6, = 6 E (0,l) for all t 2 0. Consider, first, a situation where u, = p’u, 
OTpSl. 

We shall make use of the following lemma more than once, which is true 
under (T.l) and (T.2): 

Lemma 5.1. Suppose that (ft) is a sequence of dlrerentiable functions. 
Consider a program (x, c) with xt > 0 for all t 2 0, competitive relative to prices 
(p,)?, (rJ;. Then rtsqt for all t 20, where qt is defined by (2.6) with K =rO. 

Proof Clearly, r0 s qO. Suppose, now, that rs 5 q5 fro some s 2 0. Since x, > 0, 
we have, using the competitive condition (2.4a), 

(5.1) 

Suppose that rs+l ‘qs+ 1. BY (2.W PS+ 1 > q8+ 1. Using this in (5.7), we have 

qs + 1 f Xx,) < Ps + lgXx,) + r, + 1 4 = r, 5 a, 
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contradicting the definition of qs+ 1. Hence rs+ 1 Sqs+ 1, and so r, sqt for all 
tzo. 

For Theorem 5.1, we shall assume: 

(T.5) f(x) =g(x) + 6x is continuously dgfirentiable, 
with f(0) = 0, f’(x) > 0, [lim, I J’(x)]p > 1, 
and f is concave. 

(U.3) u is continuously differentiable, 
with u’(O) > 0, and u is strictly concave. 

Theorem 5.1. Under (T5) and (U.3), a program (x,c) is optimal if and only if 
it is competitive, eficient and regular. 

Proof (Sufficiency). Follows from Theorem 4.3. 

(Necessity). First note that (x,c) is competitive and efficient by Theorem 
4.4. From the analysis in Majumdar and Nermuth (1981), we may conclude 
that optimal programs exhibit either (a) x, + 1 2 x, for all t 2 0, or (b) x, + 1 5 x, 
for all t 20. In case (b), we will rule out the situation lim,,, x,=0. 

Use the fact that x, 2 6’~ > 0 for all t 20, and competitive condition (2.4a) 
to get 

pt + Ax,) + rf + I6 - rl = 0, tzo. (5.2) 

Use (2.5) to get 

Pt+1ZP f+ lu’(c,+ I), tzo. (5.3) 

Combining (5.2) and (5.3), noting that rf+ 1 20, and applying Lemma 5.1, 

P’+ WC,+ lIg’W %+ db,) S r, 5 a, (5.4) 

where qt is defined in Lemma 5.1. 

Now 

I 

t-1 

qt + 1 = r. ,Q, (f’b,h tzo. 

Hence by (5.4) and (5.5), 

i 

t-1 

u’(~,+~lg’(x~)l(1/~)‘+‘.r~ sue U’W? t 2 1. 

(5.5) 

(5.6) 
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Suppose, now, that x,-+0 as t-too. Then 

f’(x,)+f’(O) ’ l/P. 

It is therefore easy to see that the right-hand side of (5.6) tends to zero as 
t+ co. Since g’(x,) zg’(x) > 0, it follows that 

u’(c,)+O as t+co. (5.7) 

Therefore lim,, oo infc,>O. Since f(O)=O, this contradicts the supposition that 

lim,, a x, = 0. Thus, in case (b), lim,, m x,=2> 0. So z,+z”>O. In this case, 

lim inf zJxt 2 lim inf z,/x = f/x > 0. 
r-+m t-a, 

Return now to case (a). In this case, 

Z,fl =%+I -h=x,+1 -x,+(1-6)x,h(l-6)x,. 

so 
Zt+1/&+1= ‘(1 - ~Mx,lf(x,)) 2 (1 - 4+/f(x)) ’ 0. 

Therefore lim,, m inf zJx, > 0, proving the theorem. 

The strongly productive case actually admits of a complete 
characterization (of this type) in situations of far greater generality. Such a 

characterization is also instructive, because it shows that in the special cases 
studied above regularity of a feasible program is implied by competitiveness 
and efficiency when the technology is strongly productive. Continue to 
assume that g,=g for all t 20, 6, = 6 ~(0,l) for all t 2 0, but retain the 
generality of (u,)?. We shall assume 

(T.6) f(x) =g(x) + 6x is differentiable and concave, 

with inf f’(x) = a > 1, and f(0) = 0. 
X20 

We now state: 

Theorem 5.2. Under (T.6), a program (x, c) is optimal if and only if it is 
competitive and efficient. 

Proof (Necessity). Follows from Theorem 4.4. 

(Sufficiency). Suppose, on the contrary, that (x,c) is competitive and 
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efficient, but not optimal. Therefore there exists a feasible program (x’,c’) an 
integer T*, and M: > 0 such that 

$i [u,(c;) - u&J] 2 c1 for T 2 T*. 

Since for (x’,c’), 

(5.8) 

(5.9) 

it follows that lim t_ a, inf rtx, > 0. Now given 6 E (0, l), we must have x, > 0 for 
all t 2 0. Hence Lemma 5.1 applies, and rl s qt for all t 2 0 (with (ql) defined 
as in the Lemma). Therefore 

lim inf qtx, > 0, 
t-m 

(5.10) 

and since qt > 0, x, > 0 for t 2 0, it follows that 

inf qrxl = /I > 0. (5.11) 
t+m 

Now, 

=4t+lCr+l+9t+lZt+l+4t+1~xr~4t+lct+l+41+Izt+l+(~l~)q,x,. 

Hence, for all t 2 0, 

=?--4t+lct+l where q>O. (5.12) 

It is a property of the strongly-productive technology that Czl qtc,< co [see, 
for example, Mitra (1979a)], and so q,c,+O as t_+co. Using this in (5.12), we 
have 

liminfq,+,z,+,>O. 
T’cc 

(5.13) 

Another feature of the strongly productive case is that qtxt 5 M-C co [see 
for example, Benveniste (1976)]. Therefore 

z,/x, = qtzJq,x, 2 q,z,lM> 
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and using (5.13), 

lim inf z,/x, > 0. 
**cc 

But this implies (x,c) is regular. Hence, by Theorem 4.3, it is optimal, 
which contradicts our original supposition. This proves the theorem. 

The final task of this section (and the paper) is to explore, as promised, an 
alternative route to characterizing infinite-horizon optimality. This involves 
obtaining a complete characterization of optimal programs by means of the 
competitive conditions and a transversality criterion. 

Consider the discounted case of the stationary model, with p< 1. 

We shall assume 

(T.7) f(x) =g(x) + 6x is twice continuously dijferentiable, 
with f(0) = 0, f’(x) > 0, f”(x) < 0, and lim, 1 ,, f’(x) = co. 

(U.4) u is twice continuously differentiable, 
with u(O) = 0, u’(c) > 0, u”(c) < 0, and lirncl 0 u’(c) = co. 

Theorem 5.3. Under (T.7) and (U.4) with p< 1, a feasible program (x,c) is 
optimal if and only if(i) it is competitive, (ii) lim,, to inf r,x, = 0. 

Proof (Sufficiency). For any feasible program (x’,c’), recall that we may 
write, for T2 1, 

Since lim,, m inf rTxT = 0, we are done. 

(Necessity). Optimal programs are competitive, by Theorem 4.4. 

In the case where infX2, f’(x) =a 5 1 follow the analysis of Majumdar and 
Nermuth (1981) to obtain x,-+2 as t+ co, where x” satisfies pf ‘(2) = 1. Since 
p<l, f’(xT>l, and so ql-+O as t-em. Thus lim,,,infq,x,=lim,,,q,x”=O. 
Since x,> 0 for all t 20, Lemma 5.1 applies, and qt 2 r,. Hence lim,,, infr,x, 
=o. 

In the case where infXZO f’(x)=a> 1, proceed in the following way.” We 

“The rest of the proof is due to K. Sengupta. Observe that a result of the argument is that 
efficient programs imply lim,,, infq,x,=O. It is well known [see for example, Mitra (1979a, 
corollary l)] lim,,, infq,x,=O implies efftciency. Thus efficient programs in the ‘strongly 
productive’ case (a > 1) are completely characterized by the condition lim,, m inf qrxt * 0. It can be 
shown, therefore, that consumption-value-maximization completely characterizes efficiency in the 
strong productive case. We are indebted to Mr. Sengupta for this argument. 
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will show that lim,,, infq,x, =O. Suppose, on the contrary, that this is not 
true; then there exists a>0 and T* such that qtx,z a for t& T*. Now observe 
that, for t 2 0, 

&t) 1 g’Wt 2 (a - @,. 

We have 

(5.14) 

&,)2&+,=x,+,--x,, 

so using (5.14), we get 

B&t) 2 xt + 1 where fl= ~/(a - S) > 0. (5.15) 

Multiplying both sides of (5.15) by qt+l, we get, for t> T*, 

(5.16) 

Now we know that inf,,,f’(x) > 1 implies [see, for example, Mitra (1979b)] 

f Wt<~. 
t=1 

Using (5.16) and (5.17), we have 

f qt+lCt+l/qt+lg(Xt)<CO. 
t=o 

Define 

mT= f qt+lCt+l/~t+l&?(xt)~ 
t=T 

(5.17) 

Clearly, m,>O for Tz 1, otherwise (x, c) is inefficient, hence not optimal. 
Also, m,-+O as T-co. 

Observe now that z,> 0 along a subsequence of t, otherwise lim,,, infq,x, 
=0 (since q,+O as t-+a3). Therefore, there exists T such that m,< 1 for t 2 T 
and z,>O. 

Define a program (x’, c’) by xb=x, z;=z,, 05 t < T, z:=m,z, for t2 ‘I: xi+ 1 
=z;+, +6x;, t&o, c;+i =f(xi)-x;.,, t 20. Clearly, z;zO for all t. If we can 
show that c;> c, for t = 7; and c;>=c, for all t >= 1, we will establish the 
inefficiency of (x,c). This we will now do: 

ck=g(x;_,)-zk>g(xT_,)-zz’,/m, 

=g(xT_l)-zz,=c~ (using zk=mTzT>O). 
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For t < 7; c;zc,. For t2 T, we first show that x~~m,x,. For t= 7; 

x; = 2; + 6x, _ I>= m,[z, + 6x, _ J = w&x,. 

Now suppose that xi >= m,x,, for some s 2 T. Then 

=m,+,x, [using m,~m,+,]. 

So xi 2 m,x, for t 2 7: Therefore, for t 2 7; 

2 w(x,) - m, + lz, + 1 L s(x,)Cm, - m, + J [since &J 2 z, + J. 

Therefore, 

which shows that (x,c) is ineffkient. 

But (x,c) is optimal, and therefore efficient, which is a contradiction. 

Hence lim,, m infq,x,=O, and so by Lemma 5.1, lim,,, infr,x, =O. 
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